MaTra: A Practical Approach to Fully-Automatic Indicative English-Hindi Machine Translation

Ananthakrishnan R, Kavitha M, Jayprasad J Hegde, Chandra Shekhar, Ritesh Shah, Sawani Bade, Sasikumar M
Centre for Development of Advanced Computing (formerly NCST), Juhu, Mumbai-400049 India
{anand,kavitham,jjhegde,shekhar,ritesh,sawani,sasi}@cdacmumbai.in

Abstract

MaTra is a fully automatic system for indicative English-Hindi Machine Translation (MT) of general-purpose texts. This paper discusses the strengths of the MaTra approach, especially focusing on the robust strategy for parsing and the intuitive intermediate representation used by the system. This approach allows convenient enhancement of the linguistic capabilities of the translation system, while making it possible for us to produce acceptable translations even as the system evolves. This paper also presents encouraging results of automatic evaluation using BLEU/NIST and subjective evaluation by human judges.

1 Introduction and Background

MaTra is a fully automatic system for indicative English-Hindi Machine Translation (MT) of general-purpose texts. This paper discusses the strengths of the MaTra approach, especially focusing on the robust strategy for parsing and the intuitive intermediate representation used by the system.

It is well accepted that Fully-Automatic, High Quality, General-Purpose MT is not achievable in the foreseeable future – more so for widely divergent languages like English and Hindi. Existing MT systems work by relaxing one or more of these three dimensions. They do this by: (i) focusing on a fairly small subset of the language (in domains such as weather forecasting and official gazettes), or (ii) using human assistance during or post translation, or (iii) producing indicative rather than perfect translations.

MaTra is designed to be fully automatic, and is geared towards translating real-world, general-purpose texts. As a tradeoff, MaTra makes the last of the aforementioned approximations.

The primary testing ground for MaTra is the Web, where many sentences are grammatically incorrect or incomplete (fragments) containing unknown words and abbreviations. In such a noisy environment, with incomplete knowledge, it is impractical to work with perfect models and grammars. In this scenario, the design of MaTra represents a pragmatic approach to engineering a usable system, which aims to produce understandable output for wide coverage, rather than perfect output for a limited range of sentences.

MaTra achieves this by using a judicious mix of (i) corpus-based or statistical tools and techniques for shallow parsing, word-sense disambiguation, abbreviation handling, and transliteration, and (ii) rule-based techniques for lexical and structural transfer.

The structural transfer component has at its core a relatively simple and intuitive intermediate representation (which we call MSIR – MaTra Structured Intermediate Representation) that can accommodate most types of sentences that are found in real-world texts. The simplicity and generality of the MSIR is an important aspect of our approach. The level of detail, both syntactic and semantic, is just enough to capture the divergence between English and Hindi.
In keeping with our engineering outlook, MaTra does not attempt either a deep parse or an elaborate semantic analysis of the English sentence. The parsing strategy is hybrid – a combination of statistical and rule-based techniques. The parsing component is modular by design, with each stage working on a logically separate aspect of structural analysis. One of the primary goals of the design is graceful degradation from full sentence structures all the way down to word-by-word structures.

The design of the MSIR and the parsing algorithm is the focus of this paper.

This paper is organized as follows: the next section presents the overall architecture of MaTra and describes the various components briefly. Section 3 discusses the intermediate representation used by MaTra (MSIR). The parsing algorithm used to obtain the MSIR is presented in section 4. Section 5 provides evaluation details. Section 6 concludes the paper.

![MaTra Architecture](image)
2 MaTra Architecture

Essentially, MaTra follows a structural and lexical transfer approach, using semantic information only when required. Figure 1 shows the overall architecture of the system.

The preprocessing component splits the input text into sentences. Abbreviations, acronyms, dates, numeric expressions, etc. are identified at this stage. Part-of-speech tagging and chunking are done using the fast Transformation Based Learning tool, fnTBL [Ngai and Florian, 2001]. The word sense disambiguation component, then, chooses the appropriate Hindi mapping for English words and phrases. Next, the sentence-structuring component converts the chunked input into the MSIR that facilitates Hindi generation. A rule-based generation engine [Rao et al., 1998; Rao et al., 2000; Mehta and Rao, 2003] generates the Hindi translation from the MSIR using rule-bases for preposition-mapping, noun-inflection, verb-inflection, and structural transformation. The transliteration component handles unknown words. This component uses Genetic Algorithms to learn transliteration rules from a pronunciation dictionary. [Mishra, 2004].

3 MaTra Intermediate Structured Representation (MSIR)

The core part of our transfer-based framework for translation deals with the transfer of a single clause, which is adequate for handling monofinite sentences [Rao et al., 2000]. This has then been systematically extended to handle multifinite sentences and non-finite clauses, thus covering compound and compound-complex sentences [Mehta and Rao, 2003], and further, to fragments and incomplete sentences. However, the framework, as of now, does not handle imperative and interrogative sentences. Figure 2 shows the grammar for the MSIR based on this framework.

In this section, we first discuss how various types of clauses are represented in the MSIR. Then, we look at the MSIR interpretations of Subjects, Objects, andModifiers, which are simplifications of the traditional definitions. Finally, we look at how incomplete sentences and fragments are represented in the MSIR.

3.1 Clauses

A clause is the basic unit of predication in any language, and forms the basis of the MSIR too. A clause consists of a single verb group, which represents an action, event or state change. The verb group may consist of one or more verbs, including auxiliaries and pre-modifying adverbs, and may be finite or non-finite. Every verb has certain sub-categorization features, which define the number and nature of other constituents that attach with the verb to form the clause, namely, the subject, objects, complements, and modifiers. Each clause modifier may itself be a separate clause. This recursion can be used to create sentences with a hierarchy of clauses.

Clauses may be classified, based on the types of verbs that they contain, into the following three categories:

- Finite Clauses: clauses containing a finite verb phrase. E.g., Jayshankar has visited Delhi
- Non-finite clauses: clauses containing a non-finite verb phrase but no finite verb
follow ways: (i) Dep Clause (see Figure 3).

3.1.2 Representing Dependent Clauses – Complex Sentences

The DepClause modifier when combined with an IndepClause allows us to represent complex sentences (see Figure 3).

DepClause differs from IndepClause in the following ways: (i) VerbFrame is replaced by FragFrame to indicate the fact that the verb group is optional, and (ii) it allows a subordinator (Word) in front of the FragFrame -- subordinators are words such as wh-words, although, because, etc.

3.1.3 Representing Compound Sentences

Compound sentences are represented by connecting clauses with a Conjoint. Conjuncts include and, but, or, etc., and also correlative conjunctions such as not only-but also and if-then (see Figure 4).

3.2 Subject and Object

Subject and Object in our representation have a more general interpretation than usual. Subjects are phrases (NounPhrase) or clauses with nominal function, which occur before the verb group (VerbGroup) in the sentence. Similarly, Objects are phrases or clauses with nominal function, which occur after the VerbGroup in the sentence. Thus, complements are also represented as Subjects or Objects. These are simply syntactic entities. We do not attempt to determine semantic roles here.

Subjects and Objects may themselves be clauses. Figure 5 shows such an example.

3.3 Modifiers

Modifiers can be attached to any component of a clause (Modifier within Subject, Object, VerbFrame, and FragFrame) or to a complete clause as a whole (Modifier within IndepClause and DepClause). This recursive nesting of clauses can be used to represent complexity of any arbitrary level.

For simplicity, we club all modifiers except prepositional phrases as DepClause, in which phrases are represented as verbless clauses. Prepositional phrases are represented using PrepPhrase.

3.4 Representing Incomplete Sentences and Fragments

We define Fragment to represent incomplete sentences which end at chunk boundaries. This is used to handle captions, titles, news headlines etc., which are usually not full sentences.

Incomplete sentences that do not end at chunk boundaries usually cannot be parsed in full by the sentence-structuring algorithm. MixedBag is
a fallback option that allows us to represent such structures. Any identified clause will be structured in the usual manner, while other parts of the sentence will be represented as chunks (see Figure 6).

The MSIR is a simple representation, which is reasonably easy to attain for most sentence types, using a straightforward parsing algorithm as discussed in the next section. This representation is admittedly rather coarse, and supplies much less syntactic and semantic information to the generation component than most existing grammars. As described, many categories of sentence elements have been clubbed together for simplicity of representation and parsing. For instance, except for prepositional phrases, modifiers are not distinguished, and complements are clubbed with Subject or Object. Semantic roles are largely ignored. However, based on a preliminary evaluation of MaTra, it is our contention that most of these details are not essential to English-Hindi indicative MT (see section 5 for evaluation details). We are working on larger scale and more thorough evaluation to substantiate this claim.

Hindi generation from the MSIR (structural and lexical transfer) is described in detail in [Rao et al., 1998; Rao et al., 2000; Mehta and Rao, 2003].
4 The Parsing Algorithm

The source sentence is first processed for punctuations, numerals, contractions, acronyms, and other abbreviations. The sentence is then chunked. Since the clause is the basis of the MSIR, the various clauses are then identified; this is done by the clause boundary detection component. Each clause is then structured independently as discussed in section 3.1. The MSIR for the whole sentence is finally obtained by putting these structured clauses together in a manner that adheres to the MSIR.

Thus, the parsing stage can be divided into three major components: (i) the POS tagging and chunking component, (ii) the clause boundary detection component, and (iii) the sentence-structuring component.

4.1 POS Tagging & Chunking

POS tagging and chunking are done using the fnTBL POS tagger and chunker [Ngai and Florian, 2001], which is based on rules learnt using Transformation Based Learning (TBL) on the Wall Street Journal corpus. The POS tagger chooses the most probable part-of-speech tag (from the UPenn tagset) for each word. The text chunking component of fnTBL groups the words into one of Noun, Verb, Adjective, and Preposition groups.

The following is an example of fnTBL output:

\{(SalimNP, , , -) DepClause\#1 (, , -) (wasVBD sentVBD \{, , -\})\}

4.2 Clause Boundary Detection

The clause boundary detection works on the chunked sentence. It identifies the various clauses present in a well-formed sentence based on verbs and clause boundary markers called sentinels (who, whom, which; etc.) [Narayana Murthy, 1996] as described below:

\begin{Verbatim}
for each sentinel
 extract subordinate clause and label as DepClause
 mark the position where the the subordinate clause was originally present
end for
\end{Verbatim}

The following is an example of a clause boundary output:

\{(SalimNP, , , -) DepClause\#1 (, , -) (wasVBD sentVBD \{, , -\})\}

4.3 Sentence Structuring

The last stage of parsing is the sentence-structuring component. This takes the clause boundaries and builds the MSIR from it.

The algorithm for structuring the clauses and putting these structured clauses together to obtain the MSIR is as described below.

\begin{Verbatim}
\textbf{SentStruct()}
\textbf{Begin}
 \textbf{For each clause}
 \textbf{ClauseStruct()}
 \textbf{End For}
 \textbf{if no well-formed combination of clauses and phrases}
 \textbf{Create a tree with an unstructured collection of clauses and independent phrases}
 \textbf{else}
 \textbf{if Conjunct present}
 \textbf{Root } \leftarrow \textbf{Conjunct}
 \textbf{end if}
 \textbf{if Attach each Structured Fragment or IndepClause to Root/Conjunct}
 \textbf{Attach dependent clauses to their respective IndepClauses}
 \textbf{Attach Clause Modifiers to respective clauses}
 \textbf{end if}
\textbf{end if}
\textbf{End}
\end{Verbatim}

Each clause (with a single verb group) is then structured in the following way:

\begin{Verbatim}
\textbf{ClauseStruct()}
\textbf{Begin}
 \textbf{if not Fragment}
 \textbf{Attach the verb group to the root}
 \textbf{Search and attach Noun group occurring before the verb group as Subject}
 \textbf{end if}
\textbf{end if}
\end{Verbatim}

Search and attach prepositional/noun groups as modifiers to the Subject.
5 Evaluation Strategy & Results

A preliminary test set of 315 sentences has been created by selecting sentences from news archives and other sources. This test set is in two parts:

The first part of the test set contains declarative sentences and fragments exhibiting certain basic grammatical phenomena, for example, sentences with: (i) different types of clauses in various roles (ii) different types of phrases, and (iii) all tense-aspect-modality combinations. Evaluation shows that the MSIR and parsing algorithm can handle such sentences well.

The second part includes sentences and fragments with (i) interrogative, subjunctive, and imperative mood, (ii) phrasal verbs, (iii) elliptical clauses (iv) idioms, etc. This part is intuitively more difficult for MT. We are currently working on extending the MSIR and parsing algorithm to accommodate these phenomena.

The complete test set of 315 sentences was used to evaluate the translations produced by MaTra. This serves as an indication of the effectiveness of the MSIR, parsing algorithm, and Hindi generation component.

BLEU [Papineni et al., 2002] and NIST evaluations [Doddington, 2002] were done using the NIST evaluation toolkit. One reference translation was used for each sentence. N-grams (up to 4-grams) were matched after stemming.

Table 1 shows the scores for the current version of MaTra (called MaTra2) and the previous version. The previous version, in addition to imperative and interrogative sentences, also did not have support for fragments and incomplete sentences. Non-finite clauses were also not supported. The scores suggest that substantial improvement has been made in MaTra2 over the previous version.

<table>
<thead>
<tr>
<th></th>
<th>MaTra (Feb 05)</th>
<th>MaTra2 (Mar 06)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.0377</td>
<td>0.0534</td>
</tr>
<tr>
<td>NIST</td>
<td>2.1261</td>
<td>3.1494</td>
</tr>
</tbody>
</table>

Table 1: BLEU and NIST scores

Manual inspection indicates that there are differences in lexical choice in the reference and system translations. Structural differences also exist due to the free word-order of Hindi. These are partly the reason for the low absolute scores. To improve the automatic evaluation process, we are increasing the number of reference translations for BLEU/NIST. We are also looking at other automatic evaluation strategies that perform matching of linguistic phrases rather than n-grams. Such a strategy would perhaps be more suited for a free word-order language like Hindi.

Subjective evaluation was performed by two native Hindi speakers, who are also proficient in English. These judges were able to identify most transliterated words, which may not be true for a person not knowing English. They graded translations on the following 4-point scale [Sumita et al., 1999]. Translations marked as one of A, B, and C can be considered acceptable:

A) Perfect: no problems in both information and grammar
B) Fair: easy-to-understand with some unimportant information missing or flawed grammar

1 http://www.nist.gov/speech/tests/mt/resources/scoring.htm
C) Acceptable: broken but understandable with effort
D) Nonsense: important information has been translated incorrectly

<table>
<thead>
<tr>
<th>Grade</th>
<th>% of sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.7 %</td>
</tr>
<tr>
<td>(A + B)</td>
<td>37.1 %</td>
</tr>
<tr>
<td>(A + B + C)</td>
<td>65.4 %</td>
</tr>
</tbody>
</table>

Table 2: Subjective evaluation scores

Table 2 shows the results of the subjective evaluation. Though the number of perfect translations is low (12.7%), it is highly encouraging that more than 65% of the translations were rated as acceptable.

6 Conclusion

In this paper, we have described a practical strategy for designing an English-Hindi machine translation system. The system is geared towards translating real-world, general-purpose texts with a high level of noise, such as those on the Web. The design of the system represents a pragmatic approach to engineering a usable system, which aims to produce understandable output for wide coverage, rather than perfect output for a limited range of sentences. The design is based on an intuitive intermediate representation (MSIR) that especially simplifies the parsing algorithm, as described in the paper. The approach allows convenient enhancement of the linguistic capabilities of the translation system, while making it possible for us to produce acceptable translations even as the system evolves.

Though at an early stage of implementation, preliminary evaluation of the system is very encouraging -- more than 65% of translations were rated as acceptable by human judges. The paper also reports automatic evaluation results using BLEU and NIST.

Future work will look at handling interrogative, subjunctive and imperative moods, phrasal verbs, idiomatic usages, etc. Larger scale and component-wise evaluation of the system is also being planned.

References

